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1 Splitting Fields

Definition. Consider a field extension K|k and a central simple algebra A over k. We say that K
is a splitting field for A if A⊗k K ∼= Mn(K) (as K-algebras).

We will often write AK = A⊗k K.

Notice that k splits every central simple algebra over k. Also, notice that if K splits A, then
K will also split any central simple algebra similar to A. Therefore, it makes sense to define the
relative Brauer Group:

Definition. Fix a field extension K|k. We define the relative Brauer group Br(K|k) to be the
subgroup of Br(k) of central simple algebras split by K.

By the remark above, Br(K|k) is a well-defined subset of Br(k), but we need to show that
Br(K|k) is actually a subgroup of Br(k). In fact, we will also show that K can be assumed to be
a finite Galois extension of k.

Proposition. Br(K|k) is actually a subgroup of Br(k)..

Proof. We know that AK is a central simple K-algebra, so we have a map Br(k)→ Br(K) via [A] 7→
[AK ] (where [·] means the similarity class). To see that the above map is actually a homomorphism,
notice that

(A⊗k B) 7→ (A⊗k B)⊗k K ∼= (A⊗k K)⊗K (B ⊗k K) = AK ⊗K BK

so our map is actually a homomorphism.
The kernel of the above homomorphism is exactly all central simple A-algebras that are split

by K. Therefore, by definition, Br(K|k) is a subgroup of Br(k), as desired.

In fact, we can give another characterization of the relative Brauer group which is more useful
when thinking about maximal subfields. We will give this characterization after introducing some
basic definitions.

Definition. Recall that the dimension of a central simple algebra A over k is a square. We define
the degree of A over k to be

√
dimk(A).

We can now give another characterization of Br(K|k):

Theorem. Let A be a central simple algebra over k. If A contains a subfield K with [K : k] =
deg(A), then K splits A.

Proof. Recall from last time that A ⊗k Aop ∼= Endk(A). If K ⊆ A (with K as in the statement),
then K ⊆ Aop because K is commutative. In other words, we have an injection

ι : A⊗k K → A⊗k Aop ∼= Endk(A).
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Now, since K ⊆ A, we can view A as a K-vector space with K acting on A via right multiplication.
Now, recall that A⊗Aop ∼= Endk(A) via∑

i

ai ⊗k bi 7→

(
x 7→

∑
i

aixbi

)
Therefore, since A is a right K-vector space,

ι

(∑
i

ai ⊗k ci

)
= (x 7→ aixici)

is actually a K-endomorphism of A. In short, we have shown that

A⊗k K ⊆ EndK(A).

Since EndK(A) ∼= Mn(K), it suffices to show that A⊗kK surjects onto Mn(K). To be more careful,

EndK(A) ∼= Mn(K) ∼= Mn(k)⊗k K ∼= Endk(A)⊗k K,

so n = degk(A). However, since [K : k] = degk(A), dimK(Mn(K)) = degk(A)2 and dimK(D ⊗k
K) = degk(A)2. Hence, we have shown there is a K-algebra isomorphism A ⊗k K ∼= EndK(A) ∼=
Mn(K), as desired.

There is also a converse to the above result.

Theorem. Let A be a central simple algebra over k. Assume that [K : k] = deg(A) and K splits
A. Then there is a unique (up to isomorphism) central simple k-algebra A′ similar to A so that
deg(A) = deg(A′) and K ⊆ A′.

Proof. By Wedderburn we can write A = Mn(D). Since [D] = A, we know that K also splits D.
Therefore, D ⊗k K ∼= Mm(K) where m = degk(D). It follows that

Dop ⊗k K ∼= (D ⊗k K)op ∼= Mm(K)op ∼= Mm(K),

so K also splits Dop. Furthermore, consider V = Km. The above string of isomorphisms tells us
that if we embed V into the diagonal of Mm(K), V is a left module of Dop (equivalently V is a
right module of D). Thus, by a slight generalization of Josh’s result,

EndDop(V ) = Mt(D
op) ∼= Mt(D)op ∼= Mt(D)

for t = dimDop V . Notice that any element of K induces a Dop-endomorphism of V given by
multiplication. Thus, K ⊆Mt(D).

On the other hand,

dimk V = m[K : k] = tdimk(D
op) = tdimk(D).

Hence,

t2 dimkD =
(mn)2

dimkD
= n2.

Thus, Mt(D) has dimension n2 and contains a copy of K. Furthermore, since A ∼= Mn(D), we
know that A is similar to Mt(D), so Mt(D) is the desired central simple algebra.

So far, we do not know that there is any meaningful relationship between Br(k) and Br(K|k).
Our goal will be to show that ∪K|k finite Br(K|k) = Br(k). Before achieving this goal, we need to
prove more results.
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2 Skolem-Noether

Theorem. Skolem-Noether. Let A, B be finite dimensional simple k-algebras with B central. If
f, g : A→ B are two k-algebra homomorphisms then there exists a unit b ∈ B so that

g(a) = bf(a)b−1

for all a ∈ A.

Theorem. Notice that since B is central, Bop is central as well. Therefore, we know that A⊗kBop

is also simple. Thus, for f and g, we can associate a A⊗k Bop-module structure on B via

(a⊗ b)f · x = f(a)xb

and similarly for g. We denote Bf and Bg the structures associate with f and g respectively.
Notice that dimk Bf = dimk Bg, so Bf ∼= Bg as A⊗kBop-modules. SHOULD I DESCRIBE

WHY THIS IS TRUE For ease of notation, let φ : Bf → Bg be the isomorphism and set
b = φ(1). It follows that for all x ∈ B

φ(x) = φ((1⊗ x)f · 1) = (1⊗ x)g · φ(1) = bx.

By the same argument applied to φ1, we get that φ−1(x) = b′x where b′ = φ−1(1). Thus,

x = φ ◦ φ−1(x) = bb′x

for all x ∈ B. If we set x = b, then we get bb′ = 1. By the same argument we get b′b = 1, so b is
actually a unit in B. It follows that

bf(a) = φ(f(a)) = φ((a⊗ 1)f · 1) = (a⊗ 1)gφ(1) = g(a)b,

so the result follows.

Corollary. Let A be a central simple algebra over k. Then every k-algebra automorphism of A is
inner.

Proof. If g : A → A is a k-algebra automorphism, then the Skolem-Noether Theorem applied to
f = id gives us the desired result.

3 Double Centralizer

Definition. Let A be a central simple algebra over k and B ⊆ A a simple subalgebra. We define
the centralizer to be

ZA(B) = {x ∈ A : xb = bx ∀b ∈ B}.

Theorem. Double Centralizer Theorem. Let A be a central simple k algebra with dimk(A) = n
and B ⊆ A a simple subalgebra with dimk(B) = m. Then

1. ZA(B)⊗kMm(k) ∼= A⊗Bop.

2. ZA(B) is a simple A-subalgebra with dimension dimk ZA(B) = n/m.

3. B = ZA(ZA(B)).
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Proof. We shall prove 3 first. By definition, we know that B ⊆ ZA(ZA(B)). Furthermore, by part 2
we know that ZA(B) is a simple A-subalgebra and dimk ZA(B) = n/m. Therefore, by part 2, again,
we find that ZA(ZA(B)) is a simple A-subalgebra with dimension dimk ZA(ZA(B)) = n/(n/m) =
m = dimk B. Since B ⊆ ZA(ZA(B)), by the dimension considerations above, B ∼= ZA(ZA(B)), as
needed.

We shall now prove 2. We know that A ⊗k Bop is a central simple algebra. By part 1, it
follows that ZA(B) ⊗k Mm(k) is also a central simple algebra. However, since Mm(k) is a central
simple k-algebra, every two-sided ideal of ZA(B)⊗kMm(k) is of the form a⊗kMm(k) for an ideal
a ⊆ ZA(B). As we saw, ZA(B) ⊗k Mm(k) is simple, so that means that a ⊗k Mm(k) is trivial. In
other words, a is trivial, so ZA(B) is simple. ZA(B) is a sub-algebra of A by definition.

Now, by using the isomorphism ZA(B)⊗kMn(k)) ∼= A⊗Bop, we get that

dimk(ZA(B))m2 = nm,

so dimk(ZA(B)) = n/m, as desired.
It remains to prove part 1. We will consider two different embeddings:

f, g : B → A⊗k Endk(B)

via f(b) = b ⊗ idB and g(b) = 1 ⊗ λb where λb is left multiplication by b. Now, recall that
Endk(B) ∼= Mm(k), in particular, Endk(B) is a central simple algebra. By assumption, A is a
central simple algebra, so

A⊗k Endk(B)

is also a central simple algebra.
It follows by Skolem-Noether that f and g are conjugate. In other words, we can choose a unit

x ∈ A⊗k Endk(B) such that
f(b) = xg(b)x−1

for all b ∈ B. It follows that

ZA⊗kEndk(B)(f(B)) = xZA⊗kEndk(B)(g(B))x−1

as sets. By multiplying each side by x, we actually find that the centralizers are isomorphic:

ZA⊗kEndk(B)(f(B)) ∼= ZA⊗kEndk(B)(g(B))

By definition of g and f , we can rewrite the above isomorphism as:

ZA(B)⊗k EndK(B) ∼= ZA⊗kEndk(B)(f(B)) ∼= ZA⊗kEndk(B)(g(B)) ∼= ZA⊗kEndk(B)(A⊗k L(B))

where L(B) is the image of multiplication on the left of B. However, from what Joshua also
mentioned last time,

ZA⊗kEndk(B)(A⊗k L(B)) ∼= A⊗k R(Bop) ∼= A⊗Bop.

By combining all of the isomorphism, we obtain the result we wanted.

With this major result in place, we can spend some time thinking about subfields again; specif-
ically, maximal subfields.

Corollary. Let A be a central simple algebra over k of degree n. If [K : k] = d and K is a subfield
of A then d divides n and ZA(K) is a central simple algebra over K of degree degK ZA(K) = n/d.

In particular, if d = n then ZA(K) = K and, consequently, K is a maximal subfield of A.
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Proof. Since K ⊆ A, we know that ZA(K) makes sense. Then, by part 2 of the double centralizer
theorem, ZA(K) is a simple subalgebra of A of dimension

dimk ZA(K) = n2/d.

In particular, d divides n (also, we have the square because n is the degree, not the dimension).
Since [K : k] = d, it follows that

dimK ZA(K) = n2/d2,

as desired.

IGOR HAS A TYPO IN HIS COROLLARY 4 HERE
We can also give a partial converse to the above result:

Corollary. Assume that D is a central division algebra over k. Also assume that K ⊆ D is a
maximal subfield then dimkK = n = degkD.

Proof. Assume that K ⊆ D is a maximal subfield. Notice that k ⊆ K, for if k 6⊆ K then we could
consider the compositum of k and K (which would be a bigger field containing K, a contradiction).
Notice if x ∈ ZD(K) \K then K[a] is a field containing K that is strictly bigger, a contradiction
(we are using the assumption that D is a division algebra in this step). Therefore, K = ZD(K), so
by the previous corollary, n = [K : k] = dimkK, as needed.

We will finally get to the result that allows us to relate the relative Brauer group and the
absolute Brauer group:

Theorem. Let D be a central division algebra over k. D contains a maximal subfield K which is
a separable extension of k.

Proof. If k is perfect, we are done. Therefore, assume that k is an infinite field of positive char-
acteristic p. We will first show that there exists an element a ∈ D \ k which is separable over k.
Notice that if degk(D) = n is not a power of p, then some element in the maximal subfield K
is separable. This is because, by the above corollary, [K : k] = dimkK = n and because purely
inseparable extensions must be of degree power of p. Now, assume that n = pα and that D \ k
only contains purely inseparable elements. We also know that, for all a ∈ D, an ∈ k. With this
in mind, pick a basis e1 = 1, e2, . . ., en2 of D over k. Then we can choose polynomials f1, . . .,
fn2 ∈ k[t1, . . . , tn2 ] such that

(t1e1 + · · ·+ tn2en2)n = f1e1 + · · ·+ fn2en2 .

However, as we mentioned above, an ∈ k for all a ∈ D, so

(a1e1 + · · ·+ an2en2)n

is in the span of e1 for all (a1, . . . , an2) ∈ kn2
. It follows that

f2(a1, . . . , an2) = · · ·+ fn2(a1, . . . , an2) = 0

for all ai ∈ k. Since k is infinite and fi are polynomials, that means that each fi = 0. In

particular, each polynomial is 0 on k
n2

. In other words, an ∈ k for all a ∈ D ⊗k k. We know
that D ⊗k k ∼= Mn(k). However, notice that, with respect to the usual basis, e11 ∈ Mn(k) has the
property that en11 = e11, so e11 ∈ k by the above argument. By looking at the determininant, e11

is a zero-divisor, so e11 6∈ k, a contradiction! Hence, there exists a separable element a ∈ D \ k.
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With the existence of the separable element in place, we will finish the proof by induction on
degk(D) = n. If n = 1 then D = k, so the maximal subfield is k. It is certainly separable. If n > 1,
consider [k(a) : k] = d > 1 for the a found above. By the above corollary, ZD(K(a)) is a central
division algebra over k(a) and it has dimension

dimk(a) ZD(k(a)) = (n/d)2 < n.

By the inductive hypothesis, ZD(k(a) contains a maximal subfield K that is a separable extension
of k. By the above corollary [K : k(a)] = n/d, so [K : k] = n. By the other above corollary, this
means K is a maximal subfield of D. K is separable by assumption, as desired.

We now have all the tools in place to compare relative and absolute Brauer Groups:

4 Relating Relative and Absolute Brauer Groups

Theorem. Br(k) = ∪K Br(K|k) where the union is taken over all finite Galois extensions of K.

Proof. It is clear that the union is contained in Br(k), so we will just show the reverse inclusion.
With this in mind, let A be a central simple k-algebra. Wedderburn tells us that A ∼= Mn(D) for
a division algebra D. By the above theorem, we can find a maximal subfield K of D which is a
separable extension of k with [K : k] = d. From the start of the talk, we know that

D ⊗k K ∼= Md(K),

so
A⊗k K ∼= (Mn(k)⊗k D)⊗k K ∼= Mn(K)⊗K DK

∼= Mn(K)⊗K Md(K) ∼= Mm(K).

Since K is separable over k, the normal closure of K, K ′ is a finite Galois extension of k. Notice
that

A⊗k K ′ ∼= (A⊗k K)⊗K K ′ ∼= Mm(K)⊗K K ′ ∼= Mm(K ′).

Hence, A ∈ Br(K ′|k) with K ′ a finite Galois extension of k, as desired.

Notice that, in particular, the above theorem says that every central simple algebra has a
splitting field.

A very important part of the above theorem is that Br(k) is completely described by its finite
Galois extensions. This suggests that the absolute Galois group of k will give a ton of information
about k (and vice verse).
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